Room Temperature Superconductors?

We normally think of carbon as a high resistance material. The first practical electric light bulbs produced by Edison had carbon filaments. However, there is a new kid on the block based on carbon and it is not a superconductor, but it is close. Some recent research in nanotube properties shows very high current carrying capacities.

Relatively early in the research of nanotubes, Thess et al. calculated the resistivity of ropes of metallic SWNTs to be in the order of 1E-4 ohm-cm at 300 K. They did this by measuring the resistivity directly with a four-point technique. One of their values they measured was 0.34E-4 ohm-cm, which they noted would indicate that the ropes were the most highly conductive carbon fibers known, even factoring in their error in measurement. In the same study his measurements of the conductivity, Frank et al. was able to have reach a current density in the tube greater than 1E7 A/sq cm. Later, Phaedon Avouris suggested that stable current densities of nanotubes could be pushed as high as 1E13 A/cm2.
A SWNT is a Single Walled Nano Tubes.

So how does that compare to copper? For household wiring typical current density is 500A/sq cm and ultimate current density is maybe 10X that with the wires near the melting point or beyond. In round numbers 1E4 A/sq cm vs 1E7 A/sq cm for carbon nanotubes. In other words 1,000 times the current density. At a weight per unit volume of about 1/4 that of copper. Copper resistivity at room temperature is about 1.7E-4 ohm-cm. So carbon nanotubes can carry about 5X as much current as an equivalent volume of copper for the same losses.

If we can get this stuff into mass production - which is likely to take twenty or thirty years - we can rewire the grid we have for 5X times as much power as it handles now or the same power with 1/5th the losses. Not room temperature superconductors, but a definite improvement.

H/T IntLibber at Talk Polywell

Cross Posted at Power and Control

posted by Simon on 01.12.09 at 04:36 PM










Comments

Besides its electrical advantages over copper, it also has a strength to weight ratio, along its axial direction (i.e. lengthwise), much superior to steel .

Sadly, they are incredibly difficult to manufacture.

Jeff   ·  January 16, 2009 8:43 PM

Post a comment


April 2011
Sun Mon Tue Wed Thu Fri Sat
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

ANCIENT (AND MODERN)
WORLD-WIDE CALENDAR


Search the Site


E-mail



Classics To Go

Classical Values PDA Link



Archives



Recent Entries



Links



Site Credits